Buku Tematik
Kunci Jawaban Matematika Kelas 8 Semester 2 Halaman 51 dan 52, Soal Esai Bab 6 Teorema Phytagoras
Berikut referensi kunci jawaban Matematika kelas 8 halaman 51 dan 52, Uji Kompetensi 6 soal esai tentang teorema Phytagoras.
Penulis: Briandena Silvania Sestiani | Editor: Briandena Silvania Sestiani
TRIBUNKALTIM.CO - Berikut referensi kunci jawaban Matematika kelas 8 halaman 51 dan 52, Uji Kompetensi 6 soal esai tentang teorema Phytagoras.
Pada soal Matematika kelas 8 SMP ini akan dibahas soal halaman 51 dan 52 dari nomor 7 hingga 10.
Materi teorema Phytagoras di Bab 6 Matematika perlu dipahami lebih dulu oleh siswa kelas 8 SMP sebelum melihat referensi kunci jawaban.
Tak menutup kemungkinan pada kunci jawaban Matematika kelas 8 halaman 51 dan 52, terdapat kekeliruan.
Tentu bimbingan orang tua kelas 8 SMP diperlukan untuk memeriksa kembali kunci jawaban berikut apakah sudah tepat atau belum.
Baca juga: Kunci Jawaban Matematika Kelas 8 Semester 2 Halaman 49 dan 50, 6 Soal Esai Teorema Phytagoras
Pada materi Teorema Pythagoras ini, siswa kelas 8 SMP akan mempelajari beberapa sub-bab dan diharapkan nantinya siswa dapat:
1. Memeriksa kebenaran teorema Pythagoras.
2. Menentukan panjang sisi segitiga siku-siku jika panjang dua sisi diketahui.
3. Menentukan jenis segitiga berdasarkan panjang sisi-sisi yang diketahui.
4. Menemukan dan menguji tiga bilangan apakah termasuk tripel Pythagoras atau bukan tripel Pythagoras.
5. Menerapkan teorema Pythagoras untuk menyelesaikan permasalahan nyata.
Berikut ini kunci jawaban Matematika kelas 8 semester 2 esai halaman 51-52 bagian Uji Kompetensi 6 dikutip dari Tribunnews:
Esai

7. Sebuah air mancur terletak di tengah perempatan jalan di pusat kota. Mobil merah dan mobil hijau sama-sama melaju meninggalkan air mancur tersebut. Mobil merah melaju dengan kecepatan 60 km/jam, sedangkan mobil hijau 80 km/jam.
a. Buatlah tabel yang menunjukkan jarak yang ditempuh kedua mobil dan jarak kedua mobil tersebut setelah 1 jam, 2 jam, dan 3 jam. Gambarkan perubahan jarak tersebut.
Jawaban:
jawaban mtk kls 8 hlm 51 no 7a
Jawaban nomor 7 a, Matematika Kelas 8 Halaman 51.
b. Misalkan mobil merah melaju dengan kecepatan 40 km/jam. Setelah 2 jam jarak antara kedua mobil 100 km. Berapakah kecepatan mobil hijau pada saat itu?
Keterangan: Jarak kedua mobil yang dimaksud adalah panjang ruas garis yang menghubungkan kedudukan dua mobil tersebut.
Jawaban:
Kecepatan mobil hijau = √(jarak tempuh mobil merah⊃2; – jarak kedua mobil⊃2;) / 2
= √(100⊃2; – 80⊃2;) / 2
= 60 / 2
= 30 km/jam
Jadi, kecepatan mobil hijau pada saat itu adalah 30 km/jam.
8. Perhatikan gambar segitiga ABC di bawah ini.
a. Tentukan keliling segitiga ACD
Jawaban:
Perhatikan Δ ACD siku-siku di D,
∠ CAD = 60° dan ∠ ACD = 30°
AC : AD = 2 : 1
AC : 8 = 2 : 1
AC = 8 × 2
AC = 16 cm
AD : CD = 1 : √3
8 : CD = 1 : √3
8 / CD = 1 / √3
CD = 8 × √3
CD = 8√3 cm
Keliling Δ ACD = AD + CD + AC
= 8 cm + 8√3 cm + 16 cm
= 24 cm + 8√3 cm
= 8 (3 + √3) cm
Jadi, keliling segitiga ACD adalah 8 (3 + √3) cm.
b. Apakah hubungan antara keliling segitiga ACD dan ABC?
Jawaban:
Perhatikan Δ ABC siku-siku di C, AC = 16 cm, ∠ CBA = 30° dan ∠ BAC = 60°
AC : BC = 1 : √3
16 : BC = 1 : √3
16 / BC = 1 / √3
BC = 16 × √3
BC = 16√3 cm
AC : AB = 1 : 2
16 : AB = 1 : 2
16 / AB = 1 / 2
AB = 16 × 2
AB = 32 cm
Keliling Δ ABC = AB + BC + AC
= 32 cm + 16√3 + 16 cm
= 48 cm + 16√3 cm
= 16 (3 + √3) cm
Hubungan keliling Δ ACD dan Δ ABC
Selisih keliling Δ ABC dan Δ ACD
= 16 (3 + √3) cm - 8 (3 + √3) cm
= 8 (3 + √3) cm
Perbandingan keliling Δ ACD dan Δ ABC
= 8 (3 + √3) : 16 (3 + √3)
= 1 : 2
Jadi, perbandingan keliling Δ ACD dan Δ ABC adalah 1 : 2
c. Apakah hubungan antara luas segitiga ACD dan ABC?
Jawaban:
Luas Δ ACD = 1/2 × AD × CD
= 1/2 × 8 cm × 8√3 cm
= 32√3 cm⊃2;
Luas Δ ABC = 1/2 × AC × BC
= 1/2 × 16 cm × 16√3 cm
= 8 cm × 16√3 cm⊃2;
= 128√3 cm⊃2;
Selisih luas Δ ABC dan Δ ACD
= 128√3 cm⊃2; - 32√3 cm⊃2;
= 96√3 cm⊃2;
Perbandingan luas Δ ACD dan luas Δ ABC
= 32√3 cm⊃2; : 128√3 cm⊃2;
= 1 : 4
Jadi, perbandingan luas Δ ACD dan luas Δ ABC adalah 1 : 4
Baca juga: Kunci Jawaban Matematika Kelas 8 Semester 2 Halaman 314 315 316, Uji Kompetensi Semester 2
9. Gambar di bawah ini merupakan balok ABCD.EFGH dengan panjang 10 dm, lebar 6 dm, dan tinggi 4 dm. Titik P dan Q berurut-urut merupakan titik tengah AB dan FG. Jika seekor laba-laba berjalan di permukaan balok dari titik P ke titik Q, tentukan jarak terpendek yang mungkin ditempuh oleh laba-laba.
Jawaban:
Jarak terpendeknya dengan berjalan dari titik P ke titik tengah BF kemudian ke Q maka,
P ke tengah BF = √(PB⊃2; + (1/2 x BF)⊃2;)
= √((10 / 2)⊃2; + (1/2 x 4)⊃2;)
= √(5⊃2; + 2⊃2;)
= √29
tengah BF ke Q = √(BC⊃2; + (1/2 x BF)⊃2;)
= √((6 / 2)⊃2; + (1/2 x 4)⊃2;)
= √(3⊃2; + 2⊃2;)
= √13
Jarak terpendek = √29 + √13 dm
Jadi, jarak terpendek yang mungkin ditempuh oleh laba-laba tersebut adalah √29 + √13.
10. Pada gambar di bawah ini, ketiga sisi sebuah segitiga siku-siku ditempel setengah lingkaran.
a. Tentukan luas setiap setengah lingkaran.
Jawaban:
Dengan menggunakan rumus luas setengah lingkaran = (πr2)/2 maka didapat:
- Luas setengah lingkaran dengan diameter 3 cm adalah 9π/4 cm⊃2;
- Luas setengah lingkaran dengan diameter 4 cm adalah 16π/4 cm⊃2;
- Luas setengah lingkaran dengan diameter 5 cm adalah 25π/4 cm⊃2;
b. Bagaimanakah hubungan ketiga luas setengah lingkaran tersebut?
Jawaban:
Hubungannya yakni luas setengah lingkaran pada diameter 5 cm sama besarnya dengan jumlah dua setengah lingkaran lainnya.
*) Disclaimer:
- Artikel ini hanya ditujukan kepada orang tua untuk memandu proses belajar anak.
- Sebelum melihat kunci jawaban, siswa harus terlebih dahulu menjawabnya sendiri, setelah itu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa.
IKUTI BERITA LAINNYA DI GOOGLE NEWS
Isi komentar sepenuhnya adalah tanggung jawab pengguna dan diatur dalam UU ITE.