Buku Tematik
Kunci Jawaban Matematika Kelas 9 Halaman 255, Memahami Kesebangunan Dua Segitiga
Simak referensi kunci jawaban matematika kelas 9 halaman 255 berikut tentang kesebangunan dua segitiga.
Penulis: Briandena Silvania Sestiani | Editor: Briandena Silvania Sestiani
a. Tunjukkan bahwa ∆ADB dan ∆ABC sebangun.
b. Tunjukkan bahwa ∆BDCdan ∆ABC sebangun.
Jawaban:
a) m∠BAD = m∠CAB (berhimpit)
m∠BDA = m∠CBA = 90° (diketahui siku-siku)
Jadi, ΔADB dan ΔABC sebangun karena memiliki dua pasang sudut yang bersesuaian sama besar.
b) m∠BCD = m∠ACB (berhimpit)
m∠CDB = m∠CBA = 90° (diketahui siku-siku)
Jadi, ΔBDC dan ΔABC sebangun karena memiliki dua pasang sudut yang bersesuaian sama besar.
6. Perhatikan gambar.
a. Tunjukkan bahwa ∆FCE ∼ ∆ACB.
b. Tunjukkan bahwa ∆FCE ∼ ∆DEB.
c. Tunjukkan bahwa ∆ACB ∼ ∆DEB.
d. Tentukan panjang FE dan AF
Jawaban:
a) ∠ CFE = ∠ CAB (sudut sehadap)
∠ CEF = ∠ CBA (sudut sehadap)
∠ FCE = ∠ ACB (sudut berimpit)
Jadi, ΔFCE sebangun dengan ΔACB.
b) ∠ CFE = ∠ EDB (sudut sehadap)
∠ CEF = ∠ DBE (sudut sehadap)
∠ FCE = ∠ DEB (sudut sehadap)
Jadi, ΔFCE sebangun dengan ΔDEB.
c) ∠ CAB = ∠ BDE (sudut sehadap)
∠ ABC = ∠ DBE (sudut berimpit)
∠ ACB = ∠ DEB (sudut sehadap)
Jadi, ΔACB sebangun dengan ΔDEB.
d) FE = CE x DB / BE
= 5 x 12 / 10
= 6
AF = BE x CF / CE
= 10 x 4 / 5
= 8
Jadi, panjang FE adalah 6 cm dan panjang AF adalah 8 cm.
*) Disclaimer:
- Artikel ini hanya ditujukan kepada orang tua untuk memandu proses belajar anak.
- Sebelum melihat kunci jawaban, siswa harus terlebih dahulu menjawabnya sendiri, setelah itu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. (*)
Isi komentar sepenuhnya adalah tanggung jawab pengguna dan diatur dalam UU ITE.